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roduction to SIFT

David Lowe invent SIFT at 1999
- Point Matching
- Scale Invariant
- Luminance Invariant
- Orientation Invariant
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Detection of Scale-Space Extrema

- Difference of Gaussian

D(x,y,0) = (G(x,y,ko) — G(x,y,0)) * I(x,y)
= L(x,y, ko) — L(x,y,0)

Where L(x,y,0) = G(x,y,0) = I(x,y)
- Laplacian of Gaussian : V2L(x,y,0) = Ly, + Ly,

- Heat diffusion equation : % = oV?L
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Detection of Scale-Space Extrema

aL N AL . L(nyt ko—) I L(x;Y; 0-)

A — — — |
o do Ao kl—rg ko — o
L(x,y, ko) — L(x,y,0)

(k—1)o
(k—1)o-6V?*L = L(x,y,ko) — L(x,y,0)
(k —1)6*V?L = L(x,y, ko) — L(x,y, 0)
(k —1)6%LoG = L(x,y, ko) — L(x,y, 0)
(k — 1)LoGyomatizea = DOG
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Unnormalized Laplacian response
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Gaussian Pyramid

TARGET
at expanded scales

IMAGE
lixed scale

RESULTS

TARGET

fixed scale
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at reduced scales
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Gaussian Pyramid
D(x,y,0) = L(x,y, ko) — L(x,y,0)

(next
octave)

Downsample <

2J 20

Scale S ~ x : ¥ seswrs
(first 2
oclave)

Convolve with
Gaussian V20

o0 = Difference of
Gaussian Gaussian (DOG)
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Detection of Scale-Space Extrema

Gaussian Pyramid
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Gaussian Pyramid
- Cascade property of Gaussian Kernerl
gx,y,s1+s2)=g(x,y,s1) xg(x,y,s2)
gx,y,s1+52)«1(x,y) = g(x,y,51) * g(x,y,52) = I(x,y)
L(x,y,s1+s2)=g(x,y,s1)«L(x,y,s2)
L(x,y,s1—s1+5s2)=g(x,y,s2—s1) xL(x,y,s1)
L(x,y,s2) =g(x,y,s2 —s1) «L(x,y,s1)

L(x,y,52) = g(x,y,52 —s1) x L(x,y,s1)
sigmaq, = o, sigma;, = V20

Sigma* = (\/fa)z — (0)?

Sigma = \/(\/Ea)z —(0)? =o




- Compare to 28 pixel.

- Detect the local maxima
and minima.




Difference of Gaussian function D(X)

True Extrema

X=(x1y0)

Taylor series

D(X)=D + o TX+1XT62DX |
=] aX 2 aXZ Sampling
Extremum point
D'(X)=0+ oD T+62DX D(X)—D+1 L TX
B X dX?2 B 2\ aXx
d’D aD
WX Sl |ID(X)| < 0.3 discard
3?D\ " aD
X=—"\=—=| —
0X? 0X
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Accurate Keypoint Localization
Harris Edge Detection

E(u,v) = Z [I(x +u,y+v) - I(x,y)]?
(xy)ew

I(x +uw,y + v) Taylor series

al  al ,
Ix+uy+v)=Ixy) + Pl + a—yv + hight order

Base Idea al al
~ I(x, y)+6xu+6 %

1y i 1Y)
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Accurate Keypoint Localization

Harris Edge Detection

B Z [I(x +u,y +v) — I(x,¥)]?

(xy)ewW
E(u,v)z Z I(x y)+ [ ]—I(x y)]
(xy)ew
IZ z LI,
_ (x,y)ew (xy)ew u
=l [v]
LI, 2 L
L(x,y)EW (x,y)ew i
u
= I vl [v]
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Accurate Keypoint Localization

Harris Edge Detection “Edge”
H's Eigenvalueis A{,1, (11 > 4,) A;>> A [
Det(H) = 2444, }:1 :md. A, are large
B A~ A,
Trace(H) = A +4; | E increases in all
Tr(H)? A1+ A 2 e | 2 | directions
(H)”  (A+4)" @ +1) at, (1, = r4,)
Det(H) ).112 r
@
Tr(H)*  (r+1)> “Flat” \

S < at,(r =10 .o
Det(H) r ( ) lkr,l( n

Why remove the Edge?
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Orientation Assigr

For 16x16 Pixel

m(x,y) = \/(L(x +1,y) — L(x — 1,y))2 + (L(x,y+1)— L(x,y — 1))2

Lx+1,y)-Lx—1,y)
Lix,y+1)—L(x,y—1)

0(x,y) = tan™

In addition, each sample added to the histogram is weighted by its gradient
magnitude and by a Gaussian-weighted circular window with a that is 1.5 scale
of the keypoint

eradient weighted by 2D weighted gradient
magnituce gaussian kernel magnitude




Make Histogram graph

The orientation histogram has 36 bins covering the 360 degree range of
orientation.

The highest peak in the histogram is detected, and then any other local
peak that is within 80% of the highest peak is used to also create a
keypoint with that orientation.

weighted gradient

magnitude . 4 N
® weightedl orientation histogram.

80% of peak value

- * peak
o Serond peak
§0% of peak value

>

¥ il
N s
= = = =

20-30 degrees
Orientation of keypoint
is approximately 25 degrees
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Keypoint Descriptor

We know the Magnitude, orientation of Keypoint.

But this is not special feature.

This case, o of Gaussian weighted function is half of Descriptor window
size. In addition orientation is subtract the orientation of previous session.
Finally create the histogram for the 4x4 pixel.
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Image gradients Keypoint descriptor
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Application to Object Recognition
s )

Keypoint Matching
Successful keypoint matching is very small Euclidean distance.

Euclidean distance
A= (aq,a,as,..,a,)
B = (bll bz,b3, ...,bn)

D = V Z(ai — b;)?

However, many features from an image will not have any correct match in
the DB. Thus a global threshold on distance to the closest feature does not

perform well.
A more effective measure is obtained by comparing the distance of the

closest neighbor to that of the second-closest neighbor.
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Hough Transform or RANdom Sample Consensus(RANSACQ)
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Hough Transform or RANdom Sample Consensus(RANSACQ)

° YOON.HC




Affine transform
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Affine transform
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One matching has two equations.
So requires three matching.
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Translate Scale about origin

i

Rotate about origin  Shear in x direction Shear in y directio
cos® sin® 0 1A0 100]

{-sinecoseol {010} [BIO
0 g 1. 001 001

(A1) (01)

e

TLsme cos 0)
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(cos 6, -sin 6)

Reflect about origin Reflect about x-axis Reflect about y-axi
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